You're asking about a specific chemical compound, **1-(3,3-dimethylbutan-2-yl)-3-[3-(trifluoromethyl)phenyl]thiourea**.
Here's a breakdown:
* **Structure:** This compound is a thiourea derivative. Thioureas are organic molecules with a carbon-sulfur-nitrogen (C=S-N) functional group. In this particular molecule:
* **(3,3-dimethylbutan-2-yl)**: This indicates a branched alkyl group (a chain of carbon and hydrogen atoms) attached to one nitrogen atom.
* **[3-(trifluoromethyl)phenyl]**: This indicates a phenyl ring (a six-membered ring with alternating single and double bonds) with a trifluoromethyl group (-CF3) attached at the 3rd position. This group is attached to the other nitrogen atom.
* **Importance in Research:** It's impossible to say definitively why this specific compound is important for research without more context. However, thiourea derivatives are often studied for their potential applications in:
* **Medicinal Chemistry:**
* **Drug Development:** Thioureas can exhibit a range of biological activities, including anti-inflammatory, antimicrobial, and anticancer properties. Researchers might investigate this specific compound for its potential therapeutic effects.
* **Drug Delivery:** Some thioureas can act as carriers for delivering drugs to specific target sites within the body.
* **Materials Science:**
* **Polymer Synthesis:** Thioureas can be used as building blocks for synthesizing novel polymers with interesting properties.
* **Organic Electronics:** Some thiourea derivatives have applications in organic light-emitting diodes (OLEDs) and solar cells.
* **Catalysis:** Thioureas can act as catalysts for various chemical reactions.
**To better understand the specific importance of this compound, you'd need more information:**
* **What kind of research is being conducted?** (e.g., drug discovery, material development)
* **What are the specific properties of this compound?** (e.g., solubility, reactivity, biological activity)
* **What are the research goals?** (e.g., synthesize new materials, develop new drugs, investigate catalytic activity)
Let me know if you have additional context or details about the research you're interested in, and I can provide a more specific answer.
ID Source | ID |
---|---|
PubMed CID | 4159827 |
CHEMBL ID | 1494438 |
CHEBI ID | 116120 |
SCHEMBL ID | 5444502 |
Synonym |
---|
MLS001006724 |
smr000349722 |
CHEBI:116120 |
1-(3,3-dimethylbutan-2-yl)-3-[3-(trifluoromethyl)phenyl]thiourea |
AKOS001033714 |
HMS2703D16 |
CHEMBL1494438 |
SCHEMBL5444502 |
n-[3-(trifluoromethyl)phenyl]-n'-(1,2,2-trimethylpropyl)thiourea |
AKOS016876552 |
Q27198714 |
wdosjuokmfkkip-uhfffaoysa-n |
Z56786685 |
Class | Description |
---|---|
thioureas | Compounds of general formula RR'NC(=S)NR''R'''. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASE | Homo sapiens (human) | Potency | 0.0050 | 0.0032 | 45.4673 | 12,589.2998 | AID2517 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 39.8107 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 11.2202 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 29.0810 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 22.7265 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Smad3 | Homo sapiens (human) | Potency | 25.1189 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 39.8107 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
PINK1 | Homo sapiens (human) | Potency | 15.8489 | 2.8184 | 18.8959 | 44.6684 | AID624263 |
Parkin | Homo sapiens (human) | Potency | 15.8489 | 0.8199 | 14.8306 | 44.6684 | AID624263 |
IDH1 | Homo sapiens (human) | Potency | 18.3564 | 0.0052 | 10.8652 | 35.4813 | AID686970 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 89.1251 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 25.9290 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 35.4813 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 100.0000 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 6.5812 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 29.0929 | 0.0046 | 11.3741 | 33.4983 | AID624297 |
DNA dC->dU-editing enzyme APOBEC-3F isoform a | Homo sapiens (human) | Potency | 31.6228 | 0.0259 | 11.2398 | 31.6228 | AID602313 |
Alpha-synuclein | Homo sapiens (human) | Potency | 35.4813 | 0.5623 | 9.3985 | 25.1189 | AID652106 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |